Realization of Digital Systems
(UNIT-1)



Unit-1: Realization of Digital Systems

e|Introduction

*Block Diagram Representation
Equivalent Structures

Basic FIR Digital Filter Structures
Basic IIR Digital Filter Structures
*FIR Cascaded Lattice Structures



1.1 Introduction

* The convolution sum description ot an LTI
discrete-time system can, in principle, be
used to implement the system

* For an IIR finite-dimensional system this
approach 1s not practical as here the impulse
response 1s of infinite length

* Here the input-output relation involves a

finite sum of prod

Z il

’v’ H

ucts:

n—k]+ Zjiﬂ prx[n—k]



Introduction

* The actual implementation of an LTI digital
filter can be either in software or hardware
form, depending on applications

* In either case, the signal variables and the
tilter coefficients cannot be represented
with infinite precision



Introduction

* However, a direct implementation of a digital
filter based on either the difference equation
or the finite convolution sum may not
provide satisfactory performance due to the
finite precision arithmetic

* |t 1s thus of practical interest to develop
alternate realizations and choose the structure
that provides satisfactory performance under
finite precision arithmetic



Introduction

A structural representation using
interconnected basic building blocks 1s the
first step in the hardware or software
implementation of an LTI digital filter

The structural representation provides the
key relations between some pertinent
internal variables with the input and output
that in turn provides the key to the
implementation



1.2 Block Diagram
Representation

* In the time domain, the input-output
relations of an LTI digital filter 1s given by
the convolution sum

Or,

d1'

V

=

y[n]= zk __h[k]x[n—k]

. by the linear constant coefficient
ference equatlon

| = —Zk:l d,y[n—k]+ Zf,iﬂ prx[n—k]



Block Diagram
Representaton

* For the implementation of an L'T1 digital
filter, the mput-output relationship must be
described by a valid computational algorithm

* To illustrate what we mean by a
computational algorithm, consider the causal
first-order LTI digital filter shown below

x[n] l bﬁn + 1 v y[n]
E_l E_l
1 -4
> <l

™




Block Diagram
Representaton

* The filter 1s described by the difference
equation
Vn|=—=dy[n—=1]+ pox|n]+ pyx|n—1]
* Using the above equation we can compute
y[n] for n 20 knowing the initial condition
y|—1] and the input x[n] forn = —1



Block Diagram

Representaton
V[0]==dy[-11+ pox[0]+ pix[-1]

V[1]=—=dy[0]+ pox[1]+ pyx[0]
VI2]=—=dy[1]+ pox[2]+ pix[1]

* We can continue this calculation for any
value of the time index n we desire 10



Block Diagram
Representaton

* Each step of the calculation requires a
knowledge of the previously calculated
value of the output sample (delayed value of
the output), the present value of the input
sample, and the previous value of the input
sample (delayed value of the input)

* As aresult, the first-order difference
equation can be interpreted as a valid
computational algorithm
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Basic Building

Blocks

* The computational algorithm

ofan LTI

digital filter can be conveniently

represented 1n block diagram
basic building blocks shown |

form using the
below

x[n] 4’(‘?—’ y[n] x[n] —>

>4—» yin

wn] Multiplier
Adder
1[11] i I > .T[ll]
] — 27— A

Unit delay Pick

-off node 12



Basic Building
Blocks

Advantages of block diagrams:

) Easy to write down the computational
algorithm by inspection

2)  Easy to analyze the block diagram to
determine the explicit relation between
the output and mnput

13



Basic Building

Blocks

Easy to manipulate a block diagram to
derive other “equivalent” block diagrams
yielding different computational
algorithms

Easy to determine the hardware
requirements

Easier to develop block diagram
representations from the transter

function directly "



Analysis of
Block Diagrams

* Block diagrams can be analyzed by writing
down the expressions for the output signals
of each adder as a sum of its input signals,
and developing a set of equations relating
the filter input and output signals in terms
of all internal signals

* Eliminating the unwanted internal variable:
then results in the expression for the output
signal as a function of the mput signal and
the filter parameters that are the multiplier
coefficients

N
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Analysis of
Block Diagrams

* Example: Consider the single-loop feedback

structure shown below

X(z2) f G,(2)
G2

——

* The output £(z) of the adder 1s

o (F3

E(z)=X(2)+Gr(2)Y(2)
* But from the figure, Y(z) =G (z)E(2)

16



Analysis of
Block Diagrams

* Eliminating £(z) from the previous two
equations we arrive at

[1-G1(2)G5(2)]Y(2) =Gi(2) X (2)
which leads to
Y(z) _ Gy(2)
X(z) 1-G(2)Gy(2)

H(z)=

17



"The Delay Free-1 _oop
Problems

* For physical realizability of the digital filter
structure, it 1s necessary that the block
diagram contains no delay-free loops

* To illustrate the delay-free loop problem
consider the structure below

w#]

u[n]_h

Q)

<'7A
"G—>

¥[r]

v[n] 18



"The Delay Free-1_oop
Problems

* Analysis of this structure yields
uln|=wln]+ y|n]
yln|= B(v[n]+ Au|n))
which when combined results 1n

v[n]= B(V[n]+ A(w{n]+ y[n]))
- The determination of the current
value of y[n] requires the knowledge of the
same value




"The Delay Free-1_oop
Problems

* However, this 1s physically impossible to
achieve due to the finite time required to
carry out all arithmetic operations on a
digital machine

* Method exists to detect the presence of
delay-free loops in an arbitrary digital filter
structure, along with methods to locate and
remove these loops without altering the
overall input-output relation

20



"The Delay Free-1_oop
Problems

* Removal achieved by replacing the portion
of the overall structure containing the delay-
free loops by an equivalent realization with
no delay-free loops

* Figure below shows such a realization of
the example structure described earlier

win]

1

]

vin]



Canonic and Noncanonic
Structures

* A digital filter structure is said to be
canonic if the number of delays 1n the
block diagram representation 1s equal to
the order of the transfer function

 Otherwise, 1t 1S a noncanonic structure

22



Canonic and Noncanonic
Structures

* The structure shown below 1s noncanonic as
it employs two delays to realize a first-order
difference equation

yin]=—d,y[n—1]+ pox|n]+ p\x[n—1]

x[2] l 'Dpﬂ + l v (7]

1 71




1.4 Basic FIR Digital Filter
Stauctures

* A causal FIR filter of order N 1s characterized
by a transfer function H(z) given by
N —n
H(z)=) _,/ [nl]z
which 1s a polynomial inz™
* In the time-domain the input-output relation
of the above FIR filter is given by

Vn]= X0 hlkIx[n— k]

24



Direct Fornm FIR Digital Filter
Structures

* An FIR filter of order VN 1s characterized by
N+1 coefticients and, in general, require
N+1 multipliers and N two-mput adders

* Structures in which the multiplier
coefficients are precisely the coefticients of
the transfer function are called direct form
structures

25



Direct Fornm FIR Digital Filter
Structures

* A direct form realization of an FIR filter can
be readily developed from the convolution
sum description for N =4

x[n] ——| 71 Ij[ﬂ__l],{ 1 I[ﬂ.—Z]F

N

E_l

RN

e
4

41N/

h[ﬂﬁ'7 h[l]? 2
D

D

D

o(H— yln]
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Direct Fornm FIR Digital Filter
Structures

* An analysis of this structure yields
yIn|=h|0]|x[n]+ All]x]|n—1]+ A 2]x][n - 2]
+ h[3]x[n—3]+ h[4]x[n—4]
which 1s precisely of the form of the
convolution sum description

* The direct form structure shown on the
previous slide 1s also known as a tapped
delay line or a transversal filter

27



Cascade Formm FIR Digital Filter
Strructures

* A higher-order FIR transfer function can
also be realized as a cascade of second-
order FIR sections and possibly a first-order
section

* To this end we EE‘J{]’HE:HH H(z) as

H(z) = h[0]- H (+ Bz + p,27)
uheleK—— if NV 1s even, and K—% 1f N
is odd, w ith Lok =0

28



Cascade Formm FIR Digital Filter
Strructures

A cascade realization for N =6 1s shown
below KL0]

P>t

« Each second-order section in the above
structure can also be realized in the
transposed direct form

29



Linear-Phase FIR Strructures

* The symmetry (or antisymmetry) property of
a linear-phase FIR filter can be exploited to
reduce the number of multipliers into almost
half of that in the direct form implementations

* Consider a length-7 Type 1 FIR transfer
function with a symmetric impulse response:

H(z)=h[0]+ A[11z"" + h[2]z27% + W3]z
+ 21z % + 1)z + h[0]z°

30



Linear-Phase FIR Strructures

* Rewriting H(z) in the form

H(z)=h[0](
+ h

|+ 3_6)+ fz[l](z_l + E_S)

20z + 27+ h[3]z 3

we obtain the realization shown below

gl
N h1] h[2] H3]
@ n —

31



Linear-Phase FIR Strructures

* Note: The Type | linear-phase structure for
a length-7 FIR filter requires 4 multipliers,
whereas a direct form realization requires 7
multipliers

* A similar decomposition can be applied to
a Type 2 FIR transter function

* For example, a length-8 Type 2 FIR
transfer function can be expressed as

32



Linear-Phase FIR Strructures

:
T

Z
12 A[3]
u b 33




Linear-Phase FIR Strructures

* Note: The Type 2 linear-phase structure for
a length-8 FIR filter requires 4 multipliers,
whereas a direct form realization requires 8
multipliers

* Similar savings occurs in the realization of
Type 3 and Type 4 linear-phase FIR filters
with antisymmetric impulse responses

34



1.5 Basic IIR Digital Filter
Structures

* The causal IIR digital filters we are
concerned with in this course are
characterized by a real rational transter
function of z ™V or, equivalently by a
constant coefficient difference equation

* From the difference equation, it can be
seen that the realization of the causal 1IR

digital filters requires some form of
teedback

35



Basic IR Digital Filter
Stauctures

* An N-th order IIR digital transter function is
characterized by 2N+1 unique coefficients,
and 1n general, requires 2N+1 multipliers
and 2N two-input adders for implementation

* Direct form 1IR filters:
Filter structures in which the multiplier
coefficients are precisely the coefficients
of the transfer function

36



Direct Fornm IR Digital Filter
Stuctures

* Consider for simplicity a 3rd-order IR filter
with a transter function

1 2 3

H(zy=LB) _Pot iz + P2 "+ sz
D(z) 1+dyz 7 +drz7? +dyz7

* We can implement H(z) as a cascade of two
filter sections as shown on the next slide

37



Direct Fornm IR Digital Filter
Stuctures

Wiz)
X(z)— H(z) —— Hy(2) —Y(2)

where
W(z) 2 -3
H(z)= = P(2)= po+ P12 + Pz ° + p3z
1 X (2) 0T P 2 3
Y(2) | [
H3(2)= - - ] = 3
W(z) D(z) l1+diz +dyz " +d;z
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Direct Fornm IR Digital Filter
Stuctures

* The filter section H(z) can be seen to be
an FIR filter and can be realized as shown
below

win]= pox[n]+ pyxin =11+ pya{n—2]+ ps[n—3]

39



Direct Form IR Digital Filter
Structures

* The time-domain representation of H,(z)
1S given by

yin]=w{n]-d\y[n—-1]-d,y[n—-2]-dz;y[n—-3]

* The realization of = -IT g
H,(z) follows from i1
the above equation L&
and is shown in D if[“‘ll

£

the figure -dy u 3
<‘I 40



Direct Form IR Digital Filter
Structures

* A cascade of the two structures realizing
H,(z) and H,(z) leads to the realization
of H(z) shown below and i1s known as the
direct form I structure

41




Direct Fornm IR Digital Filter
Stuctures

* The direct form | structure 1s noncanonic as
it employs 6 delays to realize a 3rd-order
transfer function

* The transpose of
the direct form |
structure 1s shown
in the figure and
it 1s called the
direct form |
structure

x(n] yln]

42



Direct Form IR Digital Filter

Stuctures

 Various other noncanonic direct form

structures can be derived by simple block
diagram manipulations as shown below

#

43



Direct Form IR Digital Filter

Stuctures

* Observe 1n the direct
form structure shown
right, the signal
variable at nodes
(D and @are
the same, and hence
the two top delays
can be shared

44



Direct Form IR Digital Filter
Structures

» Likewise, the signal variables at nodes(2)
and @) are the same, permitting the sharing
of the middle two delays

* Following the same argument, we can share
the bottom two delays leading to the final
canonic structure, which 1s called the direct
form 11 structure

* The direct form Il and the direct form 11,
structure are shown on the next slhide
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Direct Form IR Digital Filter
Structures

 Direct form realizations of an N-th order 1R
transfer function should be evident

46



Cascade Form 11IR Digital Filter
Structures

* By expressing the numerator and the
denominator polynomials of the transfer
function as a product of polynomials of
lower degree, a digital filter can be realized
as a cascade of low-order filter sections

* Consider, for example, H(z) = P(z)/D(z)
expressed as

P(z) _ R(2)P(2)P(2)

D(z) Dy(z)Dy(z)D5(2) 4

H(z)=



Cascade Form 11IR Digital Filter
Structures

* Examples of cascade realizations obtained
by different pole-zero pairings are shown
below

A(2) Bz | | B2 B(z2) Py (2) P\(2)

- I o —— | — — ! } . — ——— [
Dy (z) Dy(z) D, (z) 0,(z) D.(2) Dy(z)
Fi(z) P (2) F.(z £(z) I (z) F(z)

o H 22— o ——— = — { —=—— | -
I, (z) Dy(z) D, (z) 1,(z) Lh(z) Ihiz)
F(z) B(z) £z A(z) P(z) Pz
— ] —— | — — —— | —— ] —— |
Iy(z) 12(z) [2,(z) ,(z2) 12,(z) £ (z)

48



Cascade Form 11IR Digital Filter
Structures

* Examples of cascade realizations obtained
by different ordering of sections are shown
below

R(z) Pyz) P (@) B(z) P (z) P (2)

— i | | —— — p—l — M A — —
Dyiz) D, (z) Dy(z) Dy (z) I (z2) D, (z)
P(z) Hiz) £, () B(z) F(z) B(z)

— 2 L — —H - L — |—
D, | | D | | Dy D) | | )| | D2

| B@ || A o Py(z) L, Pz ) Bz | | R m
1@ | | | 0@ D) | | Dy | | D)




Cascade Form 11IR Digital Filter
Structures

* There are altogether a total of 36 different
cascade realizations of

R(z)P(z)P
H(Z) — 1(z)(z)13(2)

Dy(z)Dy(z)D5(2)
based on different pole-zero-pairings and
different orderings

* Due to finite wordlength effects, each such

cascade realization behaves differently from
others

50



Cascade Form 11IR Digital Filter
Structures

* Usually, the polynomials are factored into
a product of 1st-order and 2nd-order

polynomials

* In this case H(z) 1s expressed as

+ Pz

H(Z)ZP{JH(.
k

| +QflkZ_

l +Qf2k2_2

I )
+ Pz }

* |In the above, for a first-order factor

= Prr =0

51



Cascade Form 11IR Digital Filter
Structures

* Consider the 3rd-order transfer function

l'l‘/j]lﬁ_l l'l‘ﬂ]gﬁ_l +ﬁ223_2
l'|‘0f113_1 l'|‘0i'12§_1 '|‘0f223_2
* One possible realization 1s shown below

pD—r

H(E):JUO

2 52



Cascade Form 11IR Digital Filter
Structures

* Example: Direct form 1l and cascade form
realizations of
0.44z7140.36227240.0227
H(z)= 1 2 3
[+0.4z "+0.18z =02z

[ 0.44+0.362271+0.02272 z !
1+0.8271+0.5277 1-0.4z"

are shown on the next slide

53



Cascade Form 11IR Digital Filter
Structures

Direct form 11 Cascade form

54



Parallel Form 1R Digital Filtexr
Structures

* A partial-fraction expansion of the transfer
function in z! leads to the parallel form I
structure

e Thus, assuming simple poles, the transfer
function H(z) can be expressed 1n the form

H(z)= 0"‘2( J’oﬁ?’ufl 2]

I‘HCEHZ ‘l‘ﬂzﬂf

* In the above, for a real pole a5, =7, =0
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Parallel Form 1R Digital Filtexr
Structures

* A direct partial-fraction expansion of the
transfer function 1n z leads to the parallel
form 11 structure

* Assuming simple poles, 1n this case we arrive
at

l-f-{IlJ;-Z_ +{l’2};—2_

—1 =2
H(z)=5o+z[ OO 2]
k

* Here, for a real pole a,; =8,;, =0

56



Parallel Form 1R Digital Filtexr
Structures

* The two basic parallel realizations of a 3rd-

order IIR transfer tfunction are shown below

ING
b

Parallel form 1 Parallel form 11 57



Parallel Form 1R Digital Filtexr
Structures

 Example: A partial-fraction expansion of

0.44z7140362272+0.0223
14+0.427 40,1822 =022

H(z) =

inz” yields
0.6 —0.5-0.2z"]
+

H(z)=—0.1+ 1 UeE
[-0.4z 1408z +0.5z

58



Parallel Form IR Digital Filter
Structures

* The corresponding

parallel form |
realization 1s
shown 1n the

figure

59



Parallel Form 1R Digital Filtexr
Structures

* Likewise, a partial-fraction expansion of
H(z) 1n z yields
0.24 0.2z+0.25
H(z)= +—
z=0.4  z7+0.82+0.5
024z71  0.2z71+0.25272
= g - -2
1-04z 1+0.8z "+0.5z
* The corresponding
parallel form 1l realization
1s shown 1n the figure

60



1.6 FIR Cascaded L _attice
Stauctures

* An arbitrary Nth-order FIR transfer function
of the form
_ N _—n
HN (E) o 1 + Z‘H:l pHE
can be realized as a cascaded lattice structure
as shown below

X
Xofz) Xsfz)  Xy_ife) ;{zj
: R nm
ky
ky
T T T
Yafz) Yaqfz) Yyfz)



FIR Cascaded L _attice
Stauctures

* From figure, it follows that
_ —1
)(m (2) = Xm 1 (z) + kmz K?!—l (2)
V(@) =Ky Xy_1(2)+27 Yru—l (2)
* In matrix form the above equations can be
written as

}”(Z) 1 /C?_”Z_l _Xm—l(z)_
1 (2) L z1 | tpa(2)

where m=12,.... N




FIR Cascaded L _attice

Stauctures
* Denote
H,(z)=2m3) G (;)=1nl)
Xo(z) Xo(2)

* Then 1t follows from the mput-output
relations of the m-th two-pair that

H,,(z) = H,,_(2)+ k;*'HZ_lGH?—l (2)
G (2) =Ky Hy1(2) + z” G-y (2)
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FIR Cascaded L _attice
Stauctures

* From the previous equation we observe
H((2)=1+kz7', G(z)=k +z
where we have used the facts
Hy(z)=Xy(z)/ Xy(z) =1

Go(z)=Yy(2)/ Xo(2)=Xy(2)/ Xy(z) =1
» It follows from the above that
G (z)=zl(zk +)=z"1H(z])
mm) (5;(2) 1s the mirror-image of Hy(z)

64



FIR Cascaded L _attice
Stauctures

* From the input-output relations of the m-th
two-pair we obtam for m = 2

H,(z)= Hy(z)+kyz7'Gy(2)
G,(z)=k,H (2) +z7'G(z)

 Since H(z) and Gy(z) are 1st-order
polynomials, 1t follows that H,(z) and G, (z)
are 2nd-order polynomials

65



FIR Cascaded L _attice
Stauctures

« Substituting Gy(z) =z"'H,(z™") in the two
previous equations we get
H,(z)= H{(z)+kyz ?H(z7")
G,(z) =k, H{(z)+z 2 H(z7")
« Now we can write
Gy(2)=ky Hy(z) + 2 *Hy(z7")
=z *[kyz* Hy(z)+ H\(z7)]=z72Hp(z7")
== (5,(2z) 1s the mirror-image of H,(z)
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FIR Cascaded L _attice
Stauctures

 In the general case, from the mput-output
relations of the m-th two—pair we obtain
H,,(z) = Hy,_ I(Z)_l'kn?z m—1(2)
Gy (2) =k Hyy 1 (2) + Z_IGJ'H—I (2)
It can be easily shown that
G, (z)=z"H,(z"),m=1,2,...N

== G, (2) 1s the mirror-image of H,, (z2)

67



FIR Cascaded L _attice
Stauctures

* To develop the synthesis algorithm, we

express H,,_(z) and G,,_;(z) 1n terms of

m-—
H,(z)and G, (z) for m=N,N—1,..., 1
arriving at

l
Hy_(z) = (k2 {Hy (2)=kyGy(2))

m

{ ka\r (Z)+G\,F(Z)}

68



FIR Cascaded L _attice

Stauctures

* Substituting the expressions for

and

N _
Hy(z)=1 +Zn:1pﬁz i

- —N -1 N-1 —N+n , _—N
Gy(z)=z =~ Hyl(z ):anl P,z +z

in the first equation we get

Hy_(z)=

1

v —n
1 kz {(1 — k\,p% ) + ZHZI (p” — kh,pm,_ﬁ )Z
—k,

+ (p N k N )Z - }

69



FIR Cascaded I _attice
Stauctures

* It we choose ky = py, then Hy_(2)
reduces to an FIR transfer function of order
N —1 and can be written 1n the form

Hy(2)=1+3, 7 ppz ™"
Dy = p""_k"‘”‘rf"‘”‘r“’“ JU<n<N-1
-k
* Continuing the above recursion algorithm,
all multiplier coetficients of the cascaded
lattice structure can be computed 70

where




FIR Cascaded L _attice
Stauctures

 Example: Realize the FIR transfer function

Hy(z)=1+1.2z71+1.1

2z72+40.122°-0.08z77

From the above, we observe k4 = p, =—0.08

and using P, =5
—hy

P —k Pa—n
2 1<n<3

we determine the coetficients ot Hy(z) as

p3 =0.2173913, p5 =1.2173913
p; =1.2173913
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FIR Cascaded Lattice
Stuctures
* As a result,
Hi(z)=1+1.2173913z71+1.2173913272

+0.2173913z73
* Thus, ky = p5 =0.2173913

* Using

—k
pH _le ;p’? 1 1.;: ?{:2
3

we determine the coetficients of H,(z) as
p> =10, p/ =10 ,



FIR Cascaded L _attice
Stauctures

1 2

* Asaresult, Hy(z)=1+z"+2z~

* From the above, we get k, = p5 =1

* The last recursion yields the last multiplier
coetficient k= p; /(1 +k,)=0.5

* The complete realization 1s shown below
Xofz) X

4]
k1
g z

k =0.5, k, =1, ky =0.2173913, k, =—0.08




